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Abstract. This paper introduces a continual learning approach named
MagMax, which utilizes model merging to enable large pre-trained
models to continuously learn from new data without forgetting previ-
ous knowledge. Traditional continual learning methods aim to reduce
forgetting during task training. MagMax, on the other hand, combines
sequential fine-tuning with a maximum magnitude weight selection for
effective knowledge integration after training on a new task outperforming
traditional CL methods.

1 Introduction

Large pre-trained models allow unprecedented performance improvements across
many challenging tasks [1, 2, 9, 19, 24, 29]. To keep up with the ever-changing
world, these models should adapt continuously and assimilate knowledge from the
stream of new data, which is the objective of Continual Learning (CL) [13,15,22].
Traditionally, CL approaches used regularization to retain the knowledge from
previous tasks [10, 14], grow the network while learning new tasks [20, 28], or
use a replay buffer to limit the catastrophic forgetting [6, 25, 30]. However,
model merging emerged as a new paradigm of adapting pre-trained models.
It allows to consolidate the knowledge of multiple independently fine-tuned
task-specific models into one multi-task model without any additional training.
Various methods base on selecting or interpolating the weights of task-specific
models [7, 16, 18, 21, 27]. Contrary to the traditional CL methods, which focus
on alleviating forgetting during training on new tasks, model merging allows to
seamlessly consolidate the knowledge after the training on new tasks leaving the
training procedure unchanged. Inspired by a recent progress in model merging, we
propose MagMax, a novel method for continual learning that utilizes sequential
fine-tuning and model merging via maximum magnitude selection (see Fig. 3).
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Fig. 1: Only a small fraction of parameters
that changed the most during fine-tuning is
responsible for improved performance.
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Fig. 2: Sequential fine-tuning encour-
ages consistent directions of parameter
updates. We report sign conflicts after
trimming 80% of the lowest magnitude
params in each task vector.

2 Background and motivation

Problem setting. We consider a problem of continual learning of large pre-
trained models. We assume access to a pre-trained model parametrized by d
weights θ0 ∈ Rd. Our goal is to adapt the model to a sequence of disjoint tasks
{D1, D2, . . . , Dn} one task at a time. We investigate exemplar-free scenario. We
consider two fine-tuning scenarios: (1) independent (Ind FT) - starts from pre-
trained weights θ0, and (2) sequential (Seq FT) - starts from the weights of the
model fine-tuned on the sequence of previous tasks, i.e. when fine-tuning on
task Dt, we start from θt−1 which was trained on {D1, D2, . . . , Dt−1}. We use a
notion of task vector [7] that is an element-wise difference between the fine-tuned
model and the pre-trained model, i.e. τi = θi − θ0.
Motivation. We motivate our method with the two following hypotheses.
H1: Parameters that change the most during fine-tuning are the most
important for the task. We fine-tune a model on and create a task vector τ .
Then, we keep only k% of parameters that are selected at random, or according
to their magnitude (lowest or highest) and remove the rest. Finally, we apply
the pruned task vector to the pre-trained model and evaluate its performance
(Fig. 1). We observe that only a small fraction of high-magnitude parameters in
task vectors are relevant for the model performance what validates H1.
H2: Sequential fine-tuning reduces sign conflicts. When fine-tuning the
model on several tasks, we can observe a disagreement between the directions of
task-specific updates. Such a situation is denoted as sign conflict [27] results in
interference between tasks when merging models, and hence reduced performance
of the final model. In this work, we postulate that sequential fine-tuning can
reduce the number of sign conflicts. To verify this hypothesis, we use Ind Ft and
Seq FT and count the conflicts of top-20% parameters in corresponding task
vectors (Fig. 2). We observe that sequential fine-tuning significantly reduces the
sign conflicts validating H2.
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Fig. 3: Overview of the proposed MagMax method for continual learning. We se-
quentially fine-tune the model on the subsequent tasks and create task vectors τi by
subtracting the weights of the pre-trained model θ0. Then we merge the task vectors
using MagMax strategy which selects the parameters of task vectors by highest mag-
nitude. Finally, we apply merged task vector to the pre-trained model to obtain a
multitask model θMagMax.

3 MagMax

Based on the motivations introduced in the previous Section, we introduce
MagMax. It is a novel method for continual learning that utilizes sequential
fine-tuning, following H2, and model merging based on selecting the parameters
of the highest magnitude, following H1. Given a new task, Dt, our method
consists of two steps: (1) Sequential adaptation: We obtain the new weights
of the model θt by fine-tuning it on Dt. Importantly, we start from the weights
of the model fine-tuned on previous tasks θt−1. (2) Knowledge consolidation:
We consolidate task-specific knowledge using model merging. Firstly, we create
task vectors for all tasks seen so far: {τi}ti=1, where τi = θi − θ0. Then, for
each parameter p ∈ {1, 2, . . . , d}, we select the value τpMagMax by the maximum
magnitude out of all the task vectors. Lastly, we apply the resulting task vector
τMagMax to the pre-trained model θMagMax = θ0 + λ ∗ τMagMax, where λ is a
scaling factor.

4 Experimental setup

We use CIFAR100 [12], ImageNet-R [5], CUB200 [23] and Cars [11] splitted into
into N equal subsets of disjoint classes, where N ∈ {5, 10, 20, 50}. We use CLIP
pre-trained model [19] with ViT/B-16 [3] image encoder. We follow the training
procedure from [8]. We train CIFAR100 and ImageNet-R for 10 epochs each task,
and CUB200 and Cars for 30 epochs. We use the final classification layer output
by CLIP’s text encoder and keep it frozen during fine-tuning, following [8]. We
compare MagMax against CL baselines LwF [14] and EWC [10] as well as recent
model merging strategies, Model Soup (Avg) [26], Task Arithmetic (TA) [7] and
TIES-Merging (TIES) [27]. Additionally, we introduce a simple baseline dubbed
RandMix which randomly selects each parameter from one of the fine-tuned
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Table 1: MagMax outperforms continual learning methods and merging-based ap-
proaches on a wide variety of scenarios (acc (%) after the final task).

CIFAR100 ImageNet-R CUB200 Cars Avg
Method /5 /10 /20 /50 /5 /10 /20 /50 /5 /10 /20 /5 /10 /20

Zero-shot 66.91 77.73 56.08 64.71 67.21
Joint 90.94 87.55 81.57 88.21 87.38

LwF 83.25 73.45 72.05 68.84 81.15 82.97 81.82 80.32 65.12 60.67 58.90 71.72 69.84 62.98 72.36
EWC 84.41 76.24 75.39 72.97 82.15 82.42 81.48 81.47 59.10 54.49 53.31 69.46 60.78 57.42 70.79
RandMix 81.55 77.04 75.36 72.91 83.10 81.88 80.18 78.50 59.86 58.53 58.08 67.32 65.62 64.95 71.78
MaxAbs 81.95 76.75 74.39 73.04 83.03 82.33 80.92 79.33 60.15 58.01 56.59 67.36 63.55 58.95 71.17
Avg 81.41 77.04 75.29 72.92 83.08 81.87 80.27 78.53 59.77 58.44 58.01 67.37 65.59 64.88 71.75
TIES 81.72 77.23 74.66 73.76 83.08 82.27 80.83 79.57 60.94 58.22 56.97 70.45 64.90 61.17 71.84

MagMax 84.16 80.41 78.49 76.75 83.60 83.33 82.27 81.75 63.89 60.74 58.90 73.61 69.28 65.84 74.50

Table 2: Knowledge consolidation step from MagMax improves the performance of
regularization-based CL methods but does not outperform vanilla MagMax.

CIFAR100 ImageNet-R CUB200 Cars Avg
Method /5 /10 /20 /50 /5 /10 /20 /50 /5 /10 /20 /5 /10 /20

LwF 83.25 73.45 72.05 68.84 81.15 82.97 81.82 80.32 65.12 60.67 58.89 71.72 69.84 62.98 72.36
LwF + MagMax 82.68 77.61 75.81 72.65 82.55 82.52 81.98 80.63 64.53 61.17 59.60 73.29 71.04 67.85 73.85
∆ -0.57 +4.16 +3.76 +3.81 +1.40 -0.45 +0.16 +0.31 -0.59 +0.50 +0.71 +1.57 +1.20 +4.87 +1.49

EWC 84.41 76.24 75.39 72.97 82.15 82.42 81.48 81.47 59.10 54.49 53.31 69.46 60.78 57.42 70.79
EWC + MagMax 82.34 77.73 77.66 77.03 82.07 83.02 82.35 81.60 63.57 60.61 59.15 72.83 69.59 66.00 73.97
∆ -2.07 +1.49 +2.27 +4.06 -0.08 +0.60 +0.87 +0.13 +4.47 +6.12 +5.84 +3.37 +8.81 +8.58 +3.18

MagMax 84.16 80.41 78.49 76.75 83.60 83.33 82.27 81.75 63.89 60.74 58.90 73.61 69.28 65.84 74.50

models, i.e. θpm ∼ {θpi }Ni=1. We also evaluate MaxAbs baseline, which is basically
MagMax with Ind Ft instead of Seq. Finally, we present zero-shot (pre-trained
model), and joint (model fine-tuned on the whole dataset).

5 Main results
Class-incremental learning. Tab. 1 presents the comparison of MagMax with
CL methods and merging-based baselines on various class-incremental learning
benchmarks. MagMax consistently outperforms the competitors across the
scenarios, achieving on average 2.1% better results than the second best method.
Interestingly, simple baselines that merge independent fine-tunings by averaging
(Avg) or even randomly mixing (RandMix) the weights, are close competitors to
CL methods and other merging strategies.
Does model merging help CL methods? We investigate if knowledge consoli-
dation via model merging helps to improve the performance of CL methods. We
modify MagMax and instead of performing Seq FT, we train the model using one
of the regularization-based CL methods (Tab. 2). We observe that adding model
merging significantly improves the performance of LwF and EWC in almost every
scenario. Interestingly, neither of these combinations significantly outperform
MagMax which uses naive Seq FT, traditionally known for causing catastrophic
forgetting [4,17]. These results show that model merging is a promising technique
for consolidating the knowledge after the training instead of during the training.
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Fig. 4: Magnitude of task vectors’ pa-
rameters are correlated with the con-
sistency of the update direction in the
subsequent tasks.

Selecting high magnitude parame-
ters promotes consistent update di-
rections. In this Section we set and ver-
ify the following hypothesis: parameters
which update directions were consistent
across tasks tend to have higher magni-
tude. We define an update direction as a
sign of parameter change when trained on
a given task, sgn(∆θpt ) = sgn(θpt − θpt−1).
For each parameter in each sequentially
fine-tuned task vector, we calculate the
number of consistent update directions n.
Fig. 4 presents the relation of magnitude
of task vectors’ parameters and the con-
sistency of update directions. We observe
that the parameters with higher consistency tend to have higher magnitude.
Therefore, we can think of maximum magnitude selection as a proxy for selecting
the updates that multiple tasks agree on.
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