
Extended abstracts: Resource-efficient LLM001 001

Inference Serving with Heterogeneous GPUs002 002

Anonymous ECCV 2024 Submission003 003

Paper ID #20004 004

Abstract. In this poster, we present Hels, a heterogeneity-aware LLM005 005

inference serving system designed to effectively utilize both computation006 006

and memory resources of heterogeneous GPUs. The basic idea of Hels is007 007

to leverage the heterogeneity of diverse GPUs by dynamically adjusting008 008

the number of attention heads assigned to each GPU, and the proportion009 009

of KV caches stored in the memory of each GPU. We have implemented010 010

a prototype of Hels on top of the state-of-the-art LLM inference system011 011

vLLM. Experimental results with various GPU types demonstrate that012 012

Hels can reduce the TPOT (time per output token) by 1.33x and improve013 013

overall throughput by up to 1.7x compared to state-of-the-art baselines.014 014

1 Introduction015 015

In recent years, generative large language models (LLMs) have been successfully016 016

applied across various domains, including intelligent agents, chatbots, and code017 017

generation. As this trend continues, the demand for computing resources to018 018

serve these large models has skyrocketed. Service providers, such as OpenAI,019 019

typically deploy tens of thousands of high-end GPUs (e.g., Nvidia A100) for020 020

LLM inference serving. However, due to the highly dynamic nature of inference021 021

requests, over-provisioning too many high-end GPUs will result in low resource022 022

utilization, leading to significant resource waste and carbon emissions.023 023

In this poster, we propose to improve the resource and cost efficiency of024 024

LLM Inference Serving by exploiting heterogeneous GPUs. Specially, with the025 025

rapid upgrade and iteration of GPUs, existing data centers typically house dif-026 026

ferent GPUs, such as Nvidia’s A100, V100, 4090, and 3090 [4]. Different GPUs027 027

have varying power efficiencies and capabilities, allowing for strategic allocation028 028

of tasks to the most suitable hardware. This approach ensures that each GPU029 029

is used to its full potential without being overburdened or underutilized. Addi-030 030

tionally, heterogeneous systems facilitate effective load balancing and scalability,031 031

allowing for dynamic resource allocation that prevents energy and cost waste [5].032 032

To maximize the efficiency of using heterogeneous GPUs for LLM inference033 033

serving, we present Hels, a heterogeneity-aware LLM inference serving system034 034

designed to effectively utilize both computation and memory resources of diverse035 035

GPUs. The basic idea of Hels is to leverage the heterogeneity of the GPUs by036 036

dynamically adjusting the number of attention heads assigned to each GPU,037 037

and the proportion of KV caches stored in the memory of each GPU. We have038 038



2 ECCV 2024 Submission #20

implemented a prototype of Hels on top of the state-of-the-art LLM inference039 039

system vLLM [3]. Experimental results with various GPU types demonstrate040 040

that Hels can reduce the TPOT (time per output token) by 1.33x and improve041 041

overall throughput by up to 1.7x compared to state-of-the-art baselines.042 042

2 Motivation043 043

When deploying LLM inference serving on clusters with heterogeneous GPUs, ex-044 044

isting approaches fall into two categories: heterogeneity-ignorant and heterogeneity-045 045

aware. In heterogeneity-ignorant approaches, such as vLLM [3], all GPUs are046 046

treated as if they have identical computational and memory capabilities, and047 047

model parameters are divided equally among them. In contrast, heterogeneity-048 048

aware approaches, like HexGen [2], partition LLM models into multiple shards049 049

with varying numbers of heads (tensor parallelism) or layers (pipeline paral-050 050

lelism) and assign these shards to GPUs based on their memory or computational051 051

capacities.052 052

However, both approaches have significant limitations. Heterogeneity-ignorant053 053

approaches face challenges when GPUs with limited memory cannot store as054 054

many key-value (KV) caches as those with more memory, leading to reduced055 055

batch sizes and limited throughput because the memory of all GPUs isn’t fully056 056

utilized. For example, comparing an RTX 3090 GPU and a Tesla A100 GPU,057 057

which have 24GB and 80GB of HBM respectively, when the 3090’s memory is058 058

fully utilized, the A100’s utilization can drop to below 30%.059 059

Table 1: The memory capacity and inference time across different GPUs

Device Memory Time (Prefill) Time (Decode)
A100 80 GB 0.06s 0.0097s
3090 24 GB 0.147s 0.0143s
P100 12 GB 1.47s 0.077s

On the other hand, heterogeneity-aware approaches can result in a mismatch060 060

between computation and memory capacities, leading to underutilization of ei-061 061

ther computation or memory resources. A simple experiment comparing an RTX062 062

3090, a Tesla P100, and a Tesla A100 GPU showed that while the A100 offers063 063

a 24.5× acceleration in the prefill phase and a 7.9× acceleration in the de-064 064

code phase compared to the P100, its memory capacity isn’t 7.9× larger than065 065

the P100’s. In contrast, the 3090 increases decode latency by less than 1.5×066 066

while using less than 40% of the A100’s memory footprint. Additionally, varying067 067

communication overheads across GPUs lead to imbalanced request processing068 068

latencies.069 069

A practical approach to harmonize the computational and memory capacities070 070

of heterogeneous GPUs involves balancing memory usage with computational071 071

resources. This is achieved by storing portions of the key-value (KV) caches in072 072

storage and dynamically recomputing the remaining segments as needed. While073 073

this strategy increases inference times slightly, it optimizes resource utilization074 074

without significantly compromising performance. GPUs with higher computa-075 075

tional capabilities but lower memory capacity can load more model parameter076 076



ECCV 2024 Submission #20 3

shards and reduce memory requirements by recomputing, thus enhancing re-077 077

source efficiency and overall throughput.078 078

3 Dynamical Head Assignment and KV Cache Allocation079 079

To leverage the heterogeneity of the GPUs, we dynamically adjust the number of080 080

attention heads assigned to each GPU, and the proportion of KV caches stored081 081

in the memory of each GPU. The objective of dynamical head assignment and082 082

KV cache allocation is to achieve a balanced latency among heterogeneous GPUs083 083

to minimize the overall latency. Specially, given a numbers of R user requests084 084

and a set of N = {1, 2, · · · , N} GPUs, the problem of joint head assignment and085 085

KV cache allocation can be formulated as follows:086 086

minmax
j∈N

fj(R,Pj , Hj), s.t. 0 ≤ Pj ≤ 1,

N∑
j=1

Pj = 1,

N∑
j=1

Hj = TH, Hj ∈ N. (1)087 087

Here Hj denotes the number of attention heads assigned to GPU j and TH de-088 088

notes the total number of heads in the current model. Pj denotes the proportion089 089

of KV caches stored the memory of GPU j. Function fj is the inference latency090 090

and communication latency of GPU j. According to our empirical measurements,091 091

fj can be approximated via a linear regression model.092 092

To reduce the search space and quickly decide a near-optimal solution for093 093

the above problem, we take an iterative step-wise attention heads assignment094 094

scheme. Specifically, in each iteration, we first calculate the KV cache allocation095 095

to each GPU according to their memory capability Cj . Then we obtain the096 096

latency based on the latency model fj , if the overall latency no longer decreases,097 097

we obtain an near optimal head assignment KV cache allocation. Otherwise, we098 098

allocate more heads to the GPUs with lower latency, and reclaims heads from099 099

the ones with higher latency. According to the experiments, this algorithm has100 100

linear time complexity and can be terminated in milliseconds.101 101

4 Preliminary Evaluation102 102

4.1 Evaluation Setup103 103

We have implemented Hels on the top of the widely-adopted LLM serving sys-104 104

tems vLLM [3] with 2KLOC of Python in approximately. We leverage a local105 105

heterogeneous cluster consisting of the following hosts: two hosts with four A100106 106

GPUs, two hosts with two NVIDIA 3090 GPUs each, and a host with two P100107 107

GPUs. To emulate real-world LLM serving, we generated inference request work-108 108

loads by leveraging characteristics from the OpenChat datasets [1], where the109 109

prompt length of requests exhibits substantial diversity and within a specific110 110

distribution. We also evaluate Hels across a variety of LLM models under differ-111 111

ent hardware configurations, as listed in Table 2. All LLM serving models were112 112



4 ECCV 2024 Submission #20

Table 2: Models used in experiments and corresponding cluster configurations

Model GPU Configuration in experiments
Llama-2-13b A100*2+P100*2

OPT-30b A100*2+3090*2
Table 3: TPOT (seconds) of Llama-2-13b

LLM system bs=32 bs=64 bs=128 bs=256
Hels 0.0350 0.038 0.048 0.079

vLLM 0.0568 0.0738 OOM OOM
HexGen 0.0352 0.039 0.053 0.085

executed using PyTorch 2.1.2, CUDA 12.4, and NCCL 2.18.1. We compare Hels113 113

with two SOTA baselines, vLLM [3] and HexGen [2].114 114

Table 4: TPOT (seconds) of OPT-30b (bs=batch size)

LLM system bs=32 bs=64 bs=128 bs=256
Hels 0.0444 0.0525 0.0715 0.118

vLLM 0.0508 0.0738 OOM OOM
HexGen 0.0482 0.0643 0.0934 OOM

4.2 Evaluation Results115 115

Time Per Output Token(TPOT): Table 3 shows that Hels consistently out-116 116

performs the baselines under various configurations, achieving a reduction on117 117

TPOT by up to 1.32x compared with HexGen and a remarkable 1.94x accel-118 118

eration compared with vLLM. This is because that Hels leverages an advanced119 119

dynamic KV caches storage strategy to fully utilize the memory and computa-120 120

tion capability of all servers, which not only reduces the TPOT in comparison121 121

to the baselines, but also increases maximum number of requests can be served122 122

in each iteration.123 123

Table 5: Normalized throughput of OPT-30b

LLM system Median Throughput P95 Throughput
Hels 1 1

vLLM 0.54 0.41
HexGen 0.72 0.58

Throughput: We assess the throughput of Hels and baselines using a long-124 124

term trace with time-varying arrival patterns, containing 2000 requests. As125 125

shown in Table 5, Hels achieves an improvement by up to 2.43x and 1.72x in126 126

overall throughput compared with vLLM and HexGen. This performance gain127 127

mainly attributes to the comprehensive utilization of memory capability across128 128

the clusters, enabling Hels to host more requests to saturate the computation129 129

resource.130 130



ECCV 2024 Submission #20 5

References131 131

1. Cohan, A., Dernoncourt, F., Kim, D.S., Bui, T., Kim, S., Chang, W., Goharian, N.:132 132

A discourse-aware attention model for abstractive summarization of long documents.133 133

arXiv preprint arXiv:1804.05685 (2018) 3134 134

2. Jiang, Y., Yan, R., Yao, X., Zhou, Y., Chen, B., Yuan, B.: Hexgen: Generative135 135

inference of large language model over heterogeneous environment. In: Forty-first136 136

International Conference on Machine Learning 2, 4137 137

3. Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C.H., Gonzalez, J., Zhang,138 138

H., Stoica, I.: Efficient memory management for large language model serving with139 139

pagedattention. In: Proceedings of the 29th Symposium on Operating Systems Prin-140 140

ciples. pp. 611–626 (2023) 2, 3, 4141 141

4. Weng, Q., Xiao, W., Yu, Y., Wang, W., Wang, C., He, J., Li, Y., Zhang, L., Lin,142 142

W., Ding, Y.: Mlaas in the wild: Workload analysis and scheduling in large-scale143 143

heterogeneous GPU clusters. In: 19th USENIX Symposium on Networked Systems144 144

Design and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022 1145 145

5. Yang, Z., Wu, Z., Luo, M., Chiang, W., Bhardwaj, R., Kwon, W., Zhuang, S.,146 146

Luan, F.S., Mittal, G., Shenker, S., Stoica, I.: Skypilot: An intercloud broker for147 147

sky computing. In: 20th USENIX Symposium on Networked Systems Design and148 148

Implementation, NSDI 2023, Boston, MA, April 17-19, 2023 1149 149


	Extended abstracts: Resource-efficient LLM Inference Serving with Heterogeneous GPUs

