Extended abstracts: Resource-efficient LLM ⁰⁰¹

⁰⁰² Inference Serving with Heterogeneous GPUs ⁰⁰²

 $P_{\text{aper ID}} \neq 20$ 004 004

 Abstract. In this poster, we present Hels, a heterogeneity-aware LLM 005 inference serving system designed to effectively utilize both computation 006 and memory resources of heterogeneous GPUs. The basic idea of Hels is 007 to leverage the heterogeneity of diverse GPUs by dynamically adjusting 008 the number of attention heads assigned to each GPU, and the proportion 009 of KV caches stored in the memory of each GPU. We have implemented 010 a prototype of Hels on top of the state-of-the-art LLM inference system 011 vLLM. Experimental results with various GPU types demonstrate that 012 Hels can reduce the TPOT (time per output token) by 1.33x and improve 013 overall throughput by up to 1.7x compared to state-of-the-art baselines. 014

1 Introduction ⁰¹⁵

 In recent years, generative large language models (LLMs) have been successfully ⁰¹⁶ applied across various domains, including intelligent agents, chatbots, and code ⁰¹⁷ generation. As this trend continues, the demand for computing resources to ⁰¹⁸ serve these large models has skyrocketed. Service providers, such as OpenAI, ⁰¹⁹ typically deploy tens of thousands of high-end GPUs (e.g., Nvidia A100) for ⁰²⁰ LLM inference serving. However, due to the highly dynamic nature of inference ⁰²¹ requests, over-provisioning too many high-end GPUs will result in low resource ⁰²² utilization, leading to significant resource waste and carbon emissions. ⁰²³

 In this poster, we propose to improve the resource and cost efficiency of ⁰²⁴ LLM Inference Serving by exploiting heterogeneous GPUs. Specially, with the ⁰²⁵ rapid upgrade and iteration of GPUs, existing data centers typically house dif- ⁰²⁶ ferent GPUs, such as Nvidia's A100, V100, 4090, and 3090 [\[4\]](#page-4-0). Different GPUs ⁰²⁷ have varying power efficiencies and capabilities, allowing for strategic allocation ⁰²⁸ of tasks to the most suitable hardware. This approach ensures that each GPU ⁰²⁹ is used to its full potential without being overburdened or underutilized. Addi- ⁰³⁰ tionally, heterogeneous systems facilitate effective load balancing and scalability, ⁰³¹ allowing for dynamic resource allocation that prevents energy and cost waste [\[5\]](#page-4-1). ⁰³²

 To maximize the efficiency of using heterogeneous GPUs for LLM inference ⁰³³ serving, we present Hels, a heterogeneity-aware LLM inference serving system ⁰³⁴ designed to effectively utilize both computation and memory resources of diverse ⁰³⁵ GPUs. The basic idea of Hels is to leverage the heterogeneity of the GPUs by ⁰³⁶ dynamically adjusting the number of attention heads assigned to each GPU, ⁰³⁷ and the proportion of KV caches stored in the memory of each GPU. We have ⁰³⁸

 implemented a prototype of Hels on top of the state-of-the-art LLM inference ⁰³⁹ system vLLM [\[3\]](#page-4-2). Experimental results with various GPU types demonstrate ⁰⁴⁰ that Hels can reduce the TPOT (time per output token) by 1.33x and improve ⁰⁴¹ overall throughput by up to 1.7x compared to state-of-the-art baselines. ⁰⁴²

$\overline{0}$ 2 Motivation $\overline{0}$ $\overline{0}$

 When deploying LLM inference serving on clusters with heterogeneous GPUs, ex- ⁰⁴⁴ isting approaches fall into two categories: heterogeneity-ignorant and heterogeneity- ⁰⁴⁵ aware. In heterogeneity-ignorant approaches, such as vLLM [\[3\]](#page-4-2), all GPUs are ⁰⁴⁶ treated as if they have identical computational and memory capabilities, and ⁰⁴⁷ model parameters are divided equally among them. In contrast, heterogeneity- ⁰⁴⁸ aware approaches, like HexGen [\[2\]](#page-4-3), partition LLM models into multiple shards ⁰⁴⁹ with varying numbers of heads (tensor parallelism) or layers (pipeline paral- ⁰⁵⁰ lelism) and assign these shards to GPUs based on their memory or computational ⁰⁵¹ capacities. ⁰⁵²

 However, both approaches have significant limitations. Heterogeneity-ignorant ⁰⁵³ approaches face challenges when GPUs with limited memory cannot store as ⁰⁵⁴ many key-value (KV) caches as those with more memory, leading to reduced ⁰⁵⁵ batch sizes and limited throughput because the memory of all GPUs isn't fully ⁰⁵⁶ utilized. For example, comparing an RTX 3090 GPU and a Tesla A100 GPU, ⁰⁵⁷ which have 24GB and 80GB of HBM respectively, when the 3090's memory is ⁰⁵⁸ fully utilized, the A100's utilization can drop to below 30%. ⁰⁵⁹

Table 1: The memory capacity and inference time across different GPUs

 On the other hand, heterogeneity-aware approaches can result in a mismatch ⁰⁶⁰ between computation and memory capacities, leading to underutilization of ei- ⁰⁶¹ ther computation or memory resources. A simple experiment comparing an RTX ⁰⁶² 3090, a Tesla P100, and a Tesla A100 GPU showed that while the A100 offers ⁰⁶³ 064 a 24.5 \times acceleration in the prefill phase and a 7.9 \times acceleration in the de- code phase compared to the P100, its memory capacity isn't 7.9× larger than ⁰⁶⁵ 066 the P100's. In contrast, the 3090 increases decode latency by less than $1.5\times$ 066 while using less than 40% of the A100's memory footprint. Additionally, varying ⁰⁶⁷ communication overheads across GPUs lead to imbalanced request processing ⁰⁶⁸ latencies. ⁰⁶⁹

 A practical approach to harmonize the computational and memory capacities ⁰⁷⁰ of heterogeneous GPUs involves balancing memory usage with computational ⁰⁷¹ resources. This is achieved by storing portions of the key-value (KV) caches in ⁰⁷² storage and dynamically recomputing the remaining segments as needed. While ⁰⁷³ this strategy increases inference times slightly, it optimizes resource utilization ⁰⁷⁴ without significantly compromising performance. GPUs with higher computa- ⁰⁷⁵ tional capabilities but lower memory capacity can load more model parameter ⁰⁷⁶

 λ

 shards and reduce memory requirements by recomputing, thus enhancing re- ⁰⁷⁷ source efficiency and overall throughput. ⁰⁷⁸

079 3 Dynamical Head Assignment and KV Cache Allocation 079

 To leverage the heterogeneity of the GPUs, we dynamically adjust the number of ⁰⁸⁰ attention heads assigned to each GPU, and the proportion of KV caches stored ⁰⁸¹ in the memory of each GPU. The objective of dynamical head assignment and ⁰⁸² KV cache allocation is to achieve a balanced latency among heterogeneous GPUs ⁰⁸³ 084 to minimize the overall latency. Specially, given a numbers of R user requests $\frac{0.84}{0.84}$ 085 and a set of $\mathcal{N} = \{1, 2, \cdots, N\}$ GPUs, the problem of joint head assignment and 085 KV cache allocation can be formulated as follows: ⁰⁸⁶

$$
\text{min} \max_{j \in \mathcal{N}} f_j(R, P_j, H_j), \text{ s.t. } 0 \le P_j \le 1, \sum_{j=1}^N P_j = 1, \sum_{j=1}^N H_j = TH, H_j \in \mathbb{N}. \tag{1}
$$

088 Here H_i denotes the number of attention heads assigned to GPU j and TH de-089 notes the total number of heads in the current model. P_i denotes the proportion 089 090 of KV caches stored the memory of GPU j. Function f_i is the inference latency 090 and communication latency of GPU j. According to our empirical measurements, ⁰⁹¹ ϵ_{j} can be approximated via a linear regression model. ϵ_{j} can be approximated via a linear regression model.

 To reduce the search space and quickly decide a near-optimal solution for ⁰⁹³ the above problem, we take an iterative step-wise attention heads assignment ⁰⁹⁴ scheme. Specifically, in each iteration, we first calculate the KV cache allocation ⁰⁹⁵ 096 to each GPU according to their memory capability C_i . Then we obtain the 096 097 latency based on the latency model f_i , if the overall latency no longer decreases, 097 we obtain an near optimal head assignment KV cache allocation. Otherwise, we ⁰⁹⁸ allocate more heads to the GPUs with lower latency, and reclaims heads from ⁰⁹⁹ the ones with higher latency. According to the experiments, this algorithm has ¹⁰⁰ linear time complexity and can be terminated in milliseconds. ¹⁰¹

4 Preliminary Evaluation ¹⁰²

4.1 Evaluation Setup ¹⁰³

 We have implemented Hels on the top of the widely-adopted LLM serving sys- ¹⁰⁴ tems vLLM [\[3\]](#page-4-2) with 2KLOC of Python in approximately. We leverage a local ¹⁰⁵ heterogeneous cluster consisting of the following hosts: two hosts with four A100 ¹⁰⁶ GPUs, two hosts with two NVIDIA 3090 GPUs each, and a host with two P100 ¹⁰⁷ GPUs. To emulate real-world LLM serving, we generated inference request work- ¹⁰⁸ loads by leveraging characteristics from the OpenChat datasets [\[1\]](#page-4-4), where the ¹⁰⁹ prompt length of requests exhibits substantial diversity and within a specific ¹¹⁰ distribution. We also evaluate Hels across a variety of LLM models under differ- ¹¹¹ ent hardware configurations, as listed in Table [2.](#page-3-0) All LLM serving models were ¹¹²

Model	GPU Configuration in experiments				
$Llama-2-13b$	$A100*2 + P100*2$				
OPT-30b	$A100*2+3090*2$				
Table 3: TPOT (seconds) of Llama-2-13b					
LLM system $ bs=32 bs=64 bs=128 bs=256$					
Hels		0.0350 0.038		0.048	0.079
vLLM		0.0568 0.0738		OOM	OOM
HexGen		0.0352 0.039		0.053	0.085

Table 2: Models used in experiments and corresponding cluster configurations

¹¹³ executed using PyTorch 2.1.2, CUDA 12.4, and NCCL 2.18.1. We compare Hels ¹¹³

¹¹⁴ with two SOTA baselines, vLLM [\[3\]](#page-4-2) and HexGen [\[2\]](#page-4-3). ¹¹⁴

Table 4: TPOT (seconds) of OPT-30b (bs=batch size)

¹¹⁵ 4.2 Evaluation Results ¹¹⁵

 Time Per Output Token(TPOT): Table [3](#page-3-1) shows that Hels consistently out- ¹¹⁶ performs the baselines under various configurations, achieving a reduction on ¹¹⁷ TPOT by up to 1.32x compared with HexGen and a remarkable 1.94x accel- ¹¹⁸ eration compared with vLLM. This is because that Hels leverages an advanced ¹¹⁹ dynamic KV caches storage strategy to fully utilize the memory and computa- ¹²⁰ tion capability of all servers, which not only reduces the TPOT in comparison ¹²¹ to the baselines, but also increases maximum number of requests can be served ¹²² in each iteration. ¹²³

Table 5: Normalized throughput of OPT-30b

	LLM system Median Throughput P95 Throughput	
Hels		
vLLM	0.54	0.41
HexGen	0.72	0.58

 Throughput: We assess the throughput of Hels and baselines using a long- ¹²⁴ term trace with time-varying arrival patterns, containing 2000 requests. As ¹²⁵ shown in Table [5,](#page-3-2) Hels achieves an improvement by up to 2.43x and 1.72x in ¹²⁶ overall throughput compared with vLLM and HexGen. This performance gain ¹²⁷ mainly attributes to the comprehensive utilization of memory capability across ¹²⁸ the clusters, enabling Hels to host more requests to saturate the computation ¹²⁹ 130 resource. 130 and 130 resource 130 and 130 resource 130 and 130 an

131 References 131

- 1. Cohan, A., Dernoncourt, F., Kim, D.S., Bui, T., Kim, S., Chang, W., Goharian, N.: 132 A discourse-aware attention model for abstractive summarization of long documents. 133 arXiv preprint arXiv:1804.05685 (2018) [3](#page-2-0) 134
- 2. Jiang, Y., Yan, R., Yao, X., Zhou, Y., Chen, B., Yuan, B.: Hexgen: Generative 135 inference of large language model over heterogeneous environment. In: Forty-first 136 137 International Conference on Machine Learning [2,](#page-1-0) [4](#page-3-3) 137
- 3. Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C.H., Gonzalez, J., Zhang, 138 H., Stoica, I.: Efficient memory management for large language model serving with 139 pagedattention. In: Proceedings of the 29th Symposium on Operating Systems Prin- 140 141 ciples. pp. 611–626 (2023) [2,](#page-1-0) [3,](#page-2-0) [4](#page-3-3) 141
- 4. Weng, Q., Xiao, W., Yu, Y., Wang, W., Wang, C., He, J., Li, Y., Zhang, L., Lin, 142 W., Ding, Y.: Mlaas in the wild: Workload analysis and scheduling in large-scale 143 heterogeneous GPU clusters. In: 19th USENIX Symposium on Networked Systems 144 Design and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022 [1](#page-0-0) 145
- 5. Yang, Z., Wu, Z., Luo, M., Chiang, W., Bhardwaj, R., Kwon, W., Zhuang, S., 146 Luan, F.S., Mittal, G., Shenker, S., Stoica, I.: Skypilot: An intercloud broker for 147 sky computing. In: 20th USENIX Symposium on Networked Systems Design and 148 Implementation, NSDI 2023, Boston, MA, April 17-19, 2023 [1](#page-0-0) 149